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Exact solutions for the coagulation-fragmentation equation 
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Abstract. We present new exact equilibrium and time-dependent solutions to the two main 
versions of the Magulation-fragmentation equation. Equilibria are first found for the pure 
coagulation and pure fragmentation equations; equilibrium solutions for the full coagula- 
tion-fragmentation equation are then constructed when the kernels governing the reaction 
laLC8 a,= L11V1SI1 I" "r 2.1 a p",,,""1"',"LIII. L""r-usps,l"s'r, ~Y,",I",,S a,c a,>" "rlllr" I", 

the pure fragmentation equation. 

~~.~~ .... L ...... L.:-.--II-~~.--I.- -:-. .... ,.. >..:...>r.. 

1. Introduction 

!n this .rtic!e we stcdy the r?nn!inear kinetic eq...ticr! 

J -c(m, I )  = f  1: K(m - m , ,  m,)c(m - m , ,  t)c(m,, f )  dm, 
J t  

with t 2 0 and initial data c(m, 0) = co( m )  0. Equation ( I )  is known as the 
general coagulation-fragmentation equation; it describes the time evolution of particles 
c!m, !! of miss m a  0 underg~ing I cha~gt .  in mars govemed by the non-neg~tive 
reaction rates K(m, m,) (the coagulation kernel) and y(m, m,) (the birth rate of 
m,-mass particles due to fragmentation of m-mass particles). The first and third terms 
on the right-hand side of (1) describe a growth in the number of particles of mass m 
due to coagulation and fragmentation respectively, while the second and fourth terms 
describe the reverse of these processes. Coagulation and fragmentation equations arise 
in a number of problems including reacting polymers, clustering of colloidal particles, 
astrophysics and birth-death processes [I]. 

0 for m 

0 Address for correspondence 

0305-4470/92/L84737+08304.50 Q 1992 IOP Publishing Ltd 4137 



4738 P B Dubouskii et a/  

If it is assumed that each particle can only be split into two sub-particles then 
y(m, m,) = y(m, m - m,) and equation (1) may be rewritten in the form [2-41 

a 
at 
- c(m, t )  =+ 1; K ( m -  m, ,  m,)c(m - m l ,  t)c(m,,  t )  dm, 

-lom K(m, m M m ,  t )c(m, ,  t )  dm, 

+ ( S F ( m , m , ) r ( m +  m, ,  t )  dm,-f F(m-m, ,  m,)c(m, t )dm,  (2) 

where the fragmentation kernel becomes F ( m  - m,, m,) = y(m, m,).  It is important to 
note tht the kernels K and F are symmetric non-negative functions and that the 
fragmentation model in equation (1) is more general than that in equation (2). For a 
more extensive discussion see [3-51. 

The main objective of this paper is to present a number of new exact equilibrium 
and time-dependent solutions to equations (1) and (2). Other exact solutions may be 
found in [ 6 , 7 ]  while information o n  existence, uniqueness, density conservation and 
other properties may be found in [2, 5 ,  6 ,  8-16]. 

j: 

2. Equilibrium solutions for the pure coagulation equation 

We shall first consider the time-independent equilibrium equation for (1) when the 
fragmentation kernel y 5 0, that is, when 

$j: K(m-m,,  m,)c(m-m,)c(m,) dm,-  K(m, ml)c(m)c(ml) dm, = O .  r (3) 

By setting g(m, m,) = K(m, m,)c(m)c(m,) we may rewrite (3) as 

i j o m g ( m - m , , m J d m l =  jo- g(m,m,)dm,.  (4) 

t Jo- JOm g(m, m,) dm, dm = lo- Jo- g(m, m,) dml  dm. 

It is straightforward to check that there can be no continuous non-trivial non-negative 
solutions to (4); indeed, integrating (4) with respect to m results in the contradiction 

( 5 )  

Consequently, any non-negative solution of (4) must possess singularities. 
We now try to find a solution to (4) of the following form: 

where a is a constant. Substituting ( 6 )  into (4) (and splitting the integration on the 
left hand side of (4) into integrations over [0, m/2] and [m/2, m]) shows that 

f ( ( a - l ) m , +  m) dm, = f ( n m , + m )  d m , +  f (nm+m,)  dm, .  ( 7 )  16,112 r 
If it is assumed that a # 0 and a # 1 then 



Exact solutions for the coagulation-fragmentation equation 4739 

Differentiating (8) with respect to m yields 

Solutions of the form f ( m )  = mk will now be sought. The power k is necessarily less 
than -1 because one of the integrals in (8) is over an infinite region; we must also 
therefore have a > -1, otherwise the regions of integration in (8) include the singular 
point y = 0. 

It is easily verified that for any constant f o  

f ( m ) = f o m - ’  (10)  

is the solution of (9) for the above-mentioned functions for all a >  - 1  (by inspection 
the restrictions on a may be removed and the cases a = 0 and a = 1 can be included.) 
It now follows that if for any non-negative function u( m )  0 

where n > -1, then for any constant A 

is an equilibrium solution to (1) with y = 0. 

3. Equilibrium solutions for the pure fragmentation equation 

In this section we shall consider the equilibrium solutions to equations ( 1 )  and ( 2 )  
when the coagulation kernel K = 0. For equation (1) we require 

Upon setting g ( m + a m , ) = y ( m , ,  m ) c ( m , ) m  equation (13) may be rewritten as 

1; g ( m  + a m , )  dm, = g ( m l  + a m )  dm,.  (14) r 
Differentiating (14) with respect to m gives 

g ( m + a m )  = a(a+2+  l / a ) - ’ g ( a m )  (15) 

from which it follows that for any constant g ,  

g ( m )  =g,m-’. 

Hence if for any function u ( m )  2 0 we have 

then for any constant A 
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is a solution of (13). It should be noted that in this case y ( m , ,  m ) # y ( m , ,  m , - m )  
and therefore the solution (18) cannot solve the form of equation given by (2). 
Nevertheless, the techniques of section 2 above may he employed to derive an equi- 
librium solution for (2); namely, if 

P B Dubouskii et a1 

~ ( m + m , ) ( a m + m , ) - ~  m S m ,  
u(m+m,) (am,+m)- '  m 2 m ,  

F(m,  m J  = [ 
where a > -1 and u ( m )  2 0, then for any constant A 

is an equilibrium solution for equation (2) when K = 0. 

4. Equilibrium solutions to the coagulation-fragmentation equation 

We shall now find equilibrium solutions to both forms of the full coagulation- 
fragmentation equation given in (1) and (2). Our investigation begins with an examin- 
ation of equation (1 ) .  

Let us suppose that in ( I )  there is a function f which satisfies 

K ( m ,  ml)c(m)c(mJ = mc(ml)v(ml,  m )  = f ( m + m , ) .  (21) 
We then obtain from (1) 

fmf(m)-f:f(y) d y + i  1- 2 m  f(y) dy -i (:"f(y) dy =O.  

j2: r 
(22) 

Differentiating (22) with respect to m gives 

t m 3 f ( m ) + ( ~ m 2 + m ) f ( m ) - 4 m f ( 2 m ) =  f (y)dy-  f(y)dy. (23) 

A further differentiation yields the differential equation 

m2 
- f " ( m ) +  ( 3 ~  + l)f'(m) - 8f'(2~)+3f(m)=O 
2 (24) 

which has the solution f(m) = K2; but this solution does not satisfy the original 
equation. We therefore seek a solution of the form 

(25) 
where the a, are constants. Substituting (25) into (24) results in the recurrence relation 

f ( m )  = m-'+a,m-"+ a,m-'+. . . 

2( k - 1)(1- 23-k) 
k 2 4  

(k-2)(k-3) Ox-' 
a3 = 1 ak = 

from which we find that 

(k-1)  a k -  -2k-4- n ~ - 2 ~ - 7  
(k - 3)! i-4 

k 2 4  

and 
m 

f ( m )  = a,m-,. 
k = 3  



Exact solutions for fhe coagulation-fragmentation equation 4741 

It is simple to verify that the above series converges for any m > 0. Thus, if for any 
u(m)*O 

and 

then 

is an equilibrium solution to equation (1). 
We now consider the coagulation-fragmentation equation in the form (2) and 

proceed to use the results from sections 2 and 3 above. If for v ( m ) a O  the kernels K 
and F are given as in equations (1  1) and (19) for a > -1 then for any scalar A 

e*'" 
c ( m ) = -  

v i m )  

is an equilibrium solution to (2); this is clearly seen to be true upon inserting the relation 

K ( m ,  m M m ) 4 m l ) = F ( m ,  m , ) c ( m + m , )  (33) 
into equation (2). In general, if c ( m )  is an equilibrium solution of (2) which satisfies 
equation (33) for given kernels K and F then it follows that e*"c(m) is also an  
equilibrium solution for any constant A. 

If, however, c ( m )  is any equilibrium solution to equation (2) then a number of 
kernels K and F which correspond to this solution may be found by choosing the 
kernels such that they satisfy the relation 

where a > -1. This follows from the arguments in section 2 using equations (4), (6) 
and (IO); the equilibrium equation is then clearly satisfied. As an example, c ( m )  = e*''' 
is an equilibrium solution for the case when K = F = 1, by equation (33). Further, by 
(34), it is also a solution when 

K ( m ,  m , ) = ( 1 + ( m + m J 3 )  e-*('"+'"I) F(m, m,)  = e-*('"+'"!), (35) 

5. Time-dependeot solutions 

In this section we derive time-dependent solutions to (2) in the pure fragmentation 
case (K I 0); exact time-dependent solutions for F = 0 have recently been discussed :.. r o  Q. . . . . .~~~  
111 L",. uup'yvuc 

F ( m , m , ) = 2 F o ( m + m l ) *  k>-1  (36) 

c(m, f )  = e*'(A+Fomp)-q (37) 

where Fo is a constant. Motivated by the k = 0 result in [6] we make the ansatz 
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where A 
(2) and multiplying throughout by e&' yields 

( A  + Fomk'")(A + F,m')-" = 2F0 

P B Dubovskii et al 

0 and p and q are to be determined. Substituting this expression into equation 

m:(A + Fom7)-q dm,. (38) 

Differentiation of (38) with respect to m and dividing by Fogives (provided k -pq .< -1) 

(k+l)mk(A+Fomp)-4 -mP-l pq(A+F,mk+')(A+Fom')-q-'  

I," 

= -2mk(A+Fom')-q. (39) 

(k+ l ) ( l -q )=-2  ' (40) 

p = k + l  q =  (k+3)(k+l)- ' .  (41) 

(:mc(m,r)dm<m (42) 

Hence, by setting p = k+ 1 and dividing by mk(A+Fomk+l)~" we obtain 

from which it is seen that c(m, t )  given by equation (37) is a time-dependent solution 
to (2) provided 

We also have k -pq = -3 which shows that equations (38) and (39) are valid; moreover, 
from equations (37) and (41), 1 -pq<-I  and therefore 

for all finite times. In this case the solutions are not density conserving and it should 
be noted that condition (36) does not satisfy the uniqueness hypothesis of Stewart [SI. 
Other solutions to (2) for K = 0 and F = (m + ml)*, k >  -1, have been found explicitly 
by Ziff and McGrady [7] for particular values of k >  -1 when the initial data is 
exponentially decaying. 

A further time-dependent solution to (2) may be constructed when K = 0 and 
m 

c(m,t)= cj(t)S(m-j) 
j = ,  

(43) 

where S is the Dirac delta function. In this case the resulting discrete version of (2) 
may be written as 

j -1 m d 
-cj(t)=--f 1 F(j- i , i )c j ( t )+ I: F(i-j , j)cj(t)  
d t  i =1  i = j + ,  

where f z 0 and j = 1,2,3,. . . . We consider the case 

F(i,  j )  = i +j. (45) 

Define the sequence Xj ,  j = 1,2,3, .  . . , by 

XI = 1 xj+] = X,(I + 11j)Yi- (4j+2)( j2+3j+4)-I). (46) 

Upon inserting the ansatz 

cj( t )  = e'jPXj (47) 

into equation (44) it is clear that (47) is a solution provided 
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From (46) it follows that X j +  L for some L as j + m .  Consider (46) rewritten as (with 
j replaced by i )  

i-7 i 2 -  i + 2 ) X i / 2 -  ( i +  i )r3( ( i+  I ) ~ -  ( i +  1 ) + 2 ) ~ ~ + , / 2  = ( i +  I)-*x~+, , (49) 
Since X, + L expression (49) can be summed from j to infinity to give 

from which equation (48) is shown to be true; thus (47) is a time-dependent solution 
to (44). Since the right-hand side of equation (50) converges it follows from (47) that 

X j c j ( t ) < a  (51) 

for all finite times. (A different type of solution for the case F = 2 ( i + j )  has been 
discussed in [7].) 

m 

j = ,  

Remarks 

Approach to equilibrium in the discrete version of equation ( 2 )  for the pure coagulation 
case has been discussed in Leyvraz [ 171 who mentions that the final equilibrium solution 
consists of one infinite particle while for finite times the average size of a particle 
remains finite. Mathematically, producing equilibrium solutions which contain sin- 
gularities (as discussed above) correspond in the coagulation case to the physical 
production of an infinite particle; in the relevant literature (for example, see van 
Dongen and Emst [IS]) this resulting phenomenon is called the ‘gel’ or ‘superparticle’ 
solution whose mass is physically comparable to that of the entire system of particles. 
For comments on the pure fragmentation case see Ziff and McGrady [7]. The inclusion 
of source terms and the consequence on the coagulation equilibria have been discussed 
by White [19]. 

It is hoped that further investigations of singular solutions will be discussed in 
future work by the authors. 
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